Для размещения очага и разогреваемых заготовок необходим постамент или его еще называют стол-лежанка. Это основа стационарного горна. Постамент обычно устанавливают в середине задней стены кузницы и его высота зависит от роста кузнеца. Для удобства переноса заготовки из горна на наковальню и обратно высота постамента должны быть примерно 700-800 мм, а площадь горизонтальной поверхности стола обычно равна 1x1,5 или 1,5x2 м.
Для ручной ковки наиболее приемлемы горны открытого типа, позволяющие нагревать и короткие и длинные поковки в любой их части (в том числе и средней). Они просты в обслуживании и удобны в работе, быстро нагреваются. Для разжигания холодного горна горновое гнездо очищают от золы и шлака, продувают фурму, насыпают небольшой слой угля, оставляя отверстия фурмы свободными, затем зажигают древесную стружку или тряпки смоченные керосином, сверху засыпают второй слой угля и дают слабое дутье. Когда уголь разгорится, добавляют еще угля и постепенно увеличивают дутье. В горне, благодаря спеканию угля, образуется твердая корка, под которой развивается высокая температура.
Из уголков сварен постамент горна, стол горна выложен огнеупорным кирпичом. На верхние горизонтальные уголки кладется фурма. На высоте 15 см от основания к зольнику приваривается патрубок с внутренним диаметром 30 мм, в который вставляется конец шланга пылесоса. Необходимо иметь в виду, что шланг должен быть вставлен в верхнее гнездо пылесоса, работающее на выброс воздуха из пылесоса, а нижнюю чашку пылесоса (под пылесборником) снимают и в таком виде пылесос устанавливают на подставку.
Сталь куют в нагретом состоянии; только разогретый металл становится пластичным и легко поддается деформации. Существует определенный интервал температур начала и конца ковки для каждого сорта стали.
Нужно рассказать о часто упоминаемом в специальной литературе эксперименте ученых Донецкого политехнического института, в итоге которого был получен удивительный металл. Ученые задумали получить сталь непосредственно из руды, а для этого окатыши чистой руды проплав-ляли в установке электрошлакового переплава с графитовым электродом. Восстанавливаемый металл капля за каплей проходил через толстый слой жидкого шлака, почти полностью очищался от разнообразных примесей и сильно науглероживался.
Эта структура получается, например, при сплавлении в тигле чугуна и обрезков железа. При не слишком длительной выдержке чугун, сплавляясь с железными частицами, науглероживает, поверхностный слой приобретает свойства и структуру стали, а сердцевина у них остается железной.
Это сочетание можно получить сплавлением чугуна со сталью. Аналогичная структура получается при определенных условиях кристаллизации однородного высокоуглеродистого расплава, в результате которой формируется развитая цементитная сетка по границам крупных дендритов. Содержание углерода в композите этого типа иногда превышает 2 %.
В зависимости от размеров рельефа, тщательности отковки и шлифовки клинка узор может представлять собой либо концентрические овалы, либо разомкнутые, волнистые фигуры, напоминающие ряд сосулек или сталактитов, свисающих с обуха клинка.
После грамотно проведенной ковки, структура литого булата высшего сорта состоит из мелких округлых частиц цементита, неравномерно распределенных в матрице, состоящей из ультрамелких равноосных зерен. Причем и прочное волокно от матрицы, и сами зерна матрицы отделены друг от друга некристаллическими, полуаморфными участками с очень высокой плотностью дислокации, что делает структуру металла похожей на мокрый, пластичный песок, в котором твердые округлые песчинки разделены тонким слоем воды.
В этом случае, при использовании наиболее древних технологий выплавки стали, слиток состоит из спекшихся железных зерен со стальной оболочкой переменного по толщине состава. Структуру такого же типа имеет и железо-стальной композит, получаемый с помощью кузнечной сварки стальных и железных пластин или прутков. Среднее содержание углерода в таком материале в большинстве случаев не превышает 0,8 %.
В средневековье применялись два основных метода производства литой узорчатой стали и один дополнительный, а именно: неполное расплавление (с остатками твердой фазы) замедленная дендритная кристаллизация однородного расплава и длительный отжиг высокоуглеродистой стали. Впрочем, существовали и комби-нированные способы, когда расплав чугуна с мелкими включениями железа медленно кристаллизовался, а затем дополнительно подвергался отжигу. В сочетании с грамотной ковкой и закалкой это обеспечивало получение булатных клинков с великолепными узорами.
Наиболее полно исследовал методы производства литых разновидностей узорчато-го металла русский металлург, генерал-майор корпуса горных инженеров Павел Петрович Аносов, который в 30-х годах прошлого столетия выплавил на Златоустовском оружейном заводе булат самого высокого качества и указал основные способы его производства.
Кузнечную сварку губчатого, кричного металла применяли еще в самом начале железного века, т.е. 3500 лет назад. Эта технологическая особенность нашла отражение в самом названии древнего металла - сварочное железо. И в более поздние времена кузнечная сварка была неизменным спутником производства высококачественного металла. Суть технологии кузнечной сварки заключается в сближении очищенных от загрязнений и раскаленных поверхностей металла до расстояний, близких к межатомным. Тогда во время проковки происходит взаимопроникновение атомов, как бы сшивающее контактирующие куски металла.
Высокопроизводительным методом сварки высоколегированных сталей является прокатка пакета шлифованных или очищенных другим методом пластин на вакуумном прокатном стане, где нагрев заготовки и ее прокатка в валках производится в вакууме, исключающем окисление поверхности заготовки.
Величина свариваемого вакуумной прокаткой пакета может быть весьма значительной. Например, один из работавших в СССР вакуумных станов мог прокатывать нагретый до 1200 °С многослойный пакет толщиной 10 см, шириной 80 см и длиной два с половиной метра! В принципе, на нем можно получить 150 кг хорошего пятисотслойного дамаска любого состава за один цикл.
Слитки ликвационных булатов, ровно как и клинки из них, расковывают при нагреве до невысоких температур, не превышающих 800-850 °С. Это совершенно обязательное условие, иначе, при более сильном разогреве, карбидные частицы полностью растворяются и узоры исчезают. Аносов по этому поводу писал, что ...потеря узоров при ковке булата составляет вину кузнеца.
При каждой сварке, будь то в Японии, Златоусте или Золингене, из металла выгорает некоторое количество углерода. Современными исследованиями было установлено, что при первой сварке рых-лого пакета с большой суммарной поверхностью частиц выгорает примерно 0,3 % углерода. При каждом из последующих удвоений снижение содержания углерода составляет уже только 0,03 %. Многократные сварки прекращались, когда кузнецы снижали содержа-ние углерода в металле до желаемого уровня. Говорят, что металл считался готовым, когда отрубленная от пакета проба после закалки начинала поддаваться очень твердому напильнику. Это свидетельствовало о снижении содержания углерода до уровня около 0,7 %.
Производили дамасскую сталь разными методами. Так, например, Беруальдо Бьянчини, автор вышедшей в 1829 г. книги О дамасских клинках турецкого типа, писал, что ...масса, употребляемая сегодня для создания дамасских клинков, в точности та же самая, какая идет на изготовление клинков совершенно ординарных, т.е. равномерная смесь стали и железа в соотношении два к одному. Вытягивание дважды рафинированных болванок в полосу и последующее выковывание клинка между двух штампов происходит также, как и при изготовлении обычного клинка. Единственное различие состоит в том, что штамп длядамаскадолжен быть снабжен различными рельефами, которые желательно перенести на клинок. При ковке молотом сменяющие друг друга листы стали и железо клинка вдавливаются в углубления штампа, в результате чего возникают углубления или рельеф, которые, будучи затем спилены, дают желаемый узор.
Необычный способ повышения твердости Дамаска с чугунными прослойками описывает кузнец-оружейник В.И.Басов. По этому способу готовый многослойный пакет с тонкими сверхуглеродистыми прослойками нагревают до 1170-11 80 °С и после небольшой выдержки резко охлаждают в ледяной воде до 800-850 °С. При сильном нагреве чугунные прослойки частично расплавляются и металл насыщается растворенным углеродом до высокой концентрации. При резком охлаждении металл очень сильно сжи-мается и часть углерода в структуре прослоек превращается в... алмаз. По словам Басова, после ковки при невысоких температурах (не более 800 °С) твердость такой алмазной стали может достичь запредельного показателя — 76 НКС (для сравнения: твердость напильника составляет всего около 62 НКС).
Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).
В древнерусских письменных источниках сталь именовалась специальными терминами: Оцел, Харалуг и Уклад. В некоторых славянских языках и сегодня сталь называется Оцел, например в чешском.
Сталь — важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.
Обращает на себя внимание то обстоятельство, что, как следует из описаний Аль-Бируни, неоднородность высоко ценимого фаранда вполне устраивала восточных оружейников древности. Несмотря на то, что им была известна полностью расплавленная сталь 1 сорта, мечи они предпочитали ковать все же из узорчатого металла, а однородную сталь пускали на напильники. Это объясняется тем, что клинки из узорчатого металла, полученного литьем или кузнечной сваркой, как правило превосходили по своим боевым свойствам клинки, откованные из такой же по химическому составу, но без узорчатой стали. Причина этого превосходства заключается главным образом в процессах, происходящих при ковке металла с резко неоднородной композитной структурой.